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A wave approach is used to determine the attenuation of vertical bending vibrations along
an in"nite railway track. An innovation is the inclusion of the e!ects of the second rail, and
particularly the &&mode'' de"ned by its phase delay with respect to the vibrations of the "rst
rail. This &&mode'' could refer to the two rails vibrating symmetrically (in-phase) or
antisymmetrically (out-of-phase), for example. The results show that this &&mode'' shape can
strongly in#uence the attenuation at some frequencies. A small parametric study provides
results on the e!ect of some track design parameters on the attenuation behaviour.
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1. INTRODUCTION

The track is the main source of radiated noise below about 1250 Hz, and a signi"cant source
up to 2000 Hz [1], from train pass-byes at all but the highest speeds (about 300 km/h [2]).
Consequently, some considerable e!ort has been made in the predictive modelling of rail
vibrations.

Vibration is excited in a rail because of some process involving interaction with the
railway wheels; the process could be rolling with surface roughness, wheel impact against
a rail joint, etc. Once in the rail, it propagates away from the wheel area, as &&structure-borne
sound'', which decays with distance (from the source area), mainly by entering into the
sleepers and ballast where the losses are high. Finally, the vibrating track radiates airborne
sound to the wayside, to an extent which depends on the attenuation (spatial decay rate) in
the track [3]. The focus here is on the second of these three steps: propagation, and more
speci"cally on the in-track attenuation.

To further delimit the subject area, attention is (mostly) restricted to the far "eld region of
the vibration source. The bending near "eld of the wheel contact point, a zone of initially
rapid decay away from the source, is discussed very little. In the far "eld, the attenuation
may be described by an &&attenuation constant'' a, which is the exponential decay rate with
distance along the track. Additionally, the analysis is restricted to vertical bending
vibrations.

Indeed, models already exist to describe vibrations in railway track, including both
advanced time-domain models, such as references [4, 5], as well as frequency-domain
models such as in references [6}13]. The innovation provided here, in light of these existing
models, is the use of an e$cient transfer matrix approach in the frequency domain for
a track with discrete, #exible sleepers, and taking account of the second rail, which is shown
to be of some signi"cance. Reference [6] has #exible sleepers, and coupling of the two rails,
0022-460X/01/450857#18 $35.00/0 ( 2001 Academic Press
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but the rail is continuously supported. Reference [7] has discrete, #exible sleepers, but does
not take the second rail into account. The other frequency-domain models listed had
lumped element models for the sleepers, discrete in some cases, and did not couple the two
rails. The signi"cance of the beam-like character of the sleepers is well demonstrated in
reference [7] by the appearance of low-attenuation bands at frequencies corresponding to
sleeper modes, and in reference [6] by maxima of sleeper displacements and strains at these
frequencies.

2. METHOD

The model is formulated by regarding, in sequence, (1) the geometric and physical
description of the track, (2) the waves and decaying near "elds into and out of a &&junction''
(intersection between a rail and a sleeper) in all directions, (3) the physical conditions of
continuity and connectedness at the junctions, (4) conditions connecting the junction to the
rest of the track and (5) methodology for obtaining the attenuation.

2.1. GEOMETRY AND PHYSICAL DESCRIPTION

The physical model of the track, and the co-ordinate system, is given in Figure 1. The rail
and sleeper are modelled as Timoshenko beams, with hysteresis losses provided by complex
bending sti!nesses. The pad is a lumped sti!ness with hysteretic damping (complex
sti!ness). The ballast is a locally reacting Winkler foundation with viscous losses. The
Figure 1. Physical model and co-ordinate system.
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symbols for physical parameters of the track, as well as reference values used in calculations,
are given in Appendix B (for a typical Swedish light track with UIC-50 rails).

One can conceive of re"nements to this physical model, such as, for example, rotational
pad sti!nesses, varying sleeper cross-section, or alternative damping models. Using
a reasonable ratio of rotational-to-translational pad sti!ness, however, and the frequency
range considered in this paper, a quick calculation shows that the power supplied to the rail
by the moment reaction at a pad is at least an order of magnitude less than that supplied by
the force reaction. It seems therefore justi"ed, in a simple model, to ignore the rotational
pad sti!ness. Similarly, the bending sti!ness of a typical Swedish concrete sleeper varies by
at most about 25% along its length, giving only about 6% variation in the (Bernoulli)
bending wavenumber. Wooden sleepers vary even less along their length. The combination
of damping models selected (viscous for the ballast, hysteretic elsewhere) was found in
reference [7] to give the best results.

2.2. WAVES

Attention is given to a junction. Four regions (&&approaches'') are de"ned (see Figure 2):
A rail, left of the junction; B rail, right of the junction; C sleeper, inside the rails and
D sleeper, outside of the rails.

At each approach point (A, B, C, D), the displacement z consists of four terms: two
oscillating (e$*kx-type) and two decaying (e$kx-type). This gives a total of 16 complex
amplitudes per junction, the elements of w:
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Figure 2. Waves and near "elds at junction. Breakdown of displacements in z direction at points A, B, C, D into
waves and near "elds (with amplitudes in w). Odd (even) subscripts: bending waves (near "elds).
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be low enough such that the Timoshenko theory only gives one propagating solution (for
each of the rail and the sleeper).

The Timoshenko-theory slope h
A
, bending moment M

A
, and shear force F

A
are related at

A to the displacement z
A

by (writing in such a form that the Euler}Bernoulli theory is
recovered by keeping only the "rst terms on the right-hand sides):
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For points B, C, and D, simply replace the subscript A; for C and D, subscript S
replaces r.

The four components of the displacement (at any approach A, B, C, or D) may be
interpreted physically as two bending waves and two near "elds (see Figure 2). Thus, the
"gure introduces the symbols of straight arrows for bending waves and arrows with
a &&decaying curve'' for near "elds. The arrowhead indicates the direction of the bending
wave propagation or of the near"eld decay. The subscripts for the elements of w may seem
oddly selected, but are, nevertheless, systematic in a way which is convenient for later use:
(i) odd subscripts are for bending wave amplitudes, and even for near"eld vibrations;
(ii) subscripts )8 indicate either a wave incident on the junction, or a near "eld which
decays in a direction approaching the junction; a subscript '8 indicates a wave departing
from (i.e., transmitted or re#ected) the junction or a near "eld decaying away from the
junction; (iii) within each group of eight the "rst four subscripts pertain to the rail, and the
last four to the sleeper.
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2.3. JUNCTION CONDITIONS

Eight continuity and equilibrium conditions apply at a junction, and are collectively
designated &&junction conditions'':

Continuity of rail displacement across junction:
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Continuity of sleeper displacement across junction:

z
C
"z

D
. (11)

Continuity of rail slope across junction:
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Continuity of sleeper slope across junction:
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Equilibrium of rail moments across junction:
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Equilibrium of sleeper moments across junction:
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Equilibrium of rail shear force across junction:
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Equilibrium of sleeper shear force across junction:
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where F, M, h and z are functions of w as indicated in equations (1)}(4), (7)}(9). These
equations are repeated explicitly in terms of the amplitudes w in Appendix A.

2.4. JUNCTION INTERACTION WITH THE TRACK

2.4.1. Connection of junction to free end of sleeper

The sleeper has a free end at a distance y
0

from D. Thus, amplitudes w
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w
16

represent re#ection of w
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there, with free-end boundary conditions, as well as
decay and phase shift due to the double traverse of the distance y

0
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where the complex &&propagation-re#ection'' factors are (B is the bending wave, N the near
"eld):
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2.4.2. Connection of junction to the opposite side of the track

Next, the in#uence of the second rail may be incorporated. Consider a second rail}sleeper
junction across the track from the junction we have considered until now. This is located at
y"¸

s
!2y

0
, referring to the geometry de"ned in section 2.1. This second junction (call it

the &&mirror junction''), has a 16-element vector of wave amplitudes analogous to w of the
"rst junction; call this w@. Furthermore, let w@ be de"ned according to the &&mirror'' principle:
such that w@

j
has the same direction as w

j
, for j"1,2, 4, 9,2, 12 (i.e., waves/near "elds on

the rail), while w@
j
has the opposite direction to w

j
, for j"5,2, 8, 13,2, 16 (i.e., waves/near

"elds on the sleeper). Using this de"nition, one may then write an &&assembly condition''
joining the two halves of the track together:
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where the exponential terms represent decay and phase shift due to propagation across the
track (from y"0 to ¸

s
!2y

0
).

The presumed excitation source of the track is the wheelset. It acts on both rails
simultaneously, and its motion may be some combination of vertical and rolling rigid-body
motions, as well as symmetric and antisymmetric bending mode shapes. Additionally, the
track structure is symmetric with respect to its centreline. Thus, track modes will be excited
in which the two rails vibrate with the same magnitude, but are possibly phase shifted. Thus,
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where / is a complex constant satisfying D/D"1, which gives a phase shift u between the
rails, where /"e*u. Other motions, such as apparent independent vibration of a single rail,
may be treated as summations of independent track modes.

Combining equations (25}28) gives
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where we use the complex &&propagation constants''
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One may simply regard w
5

and w
6

as propagating away into an in"nite sleeper, while
w
13

and w
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are contributed by a vibration source on the sleeper at y " ¸
s
!2y

0
(i.e.,

below the second rail). Observe that w
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and w
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do not represent re#ections of w
5

and w
6
.

Instead, they are from a source which is identical to the considered junction (except for the
phase shift u ).

¹he arbitrary complex constant / can be regarded as representing the &&track mode'' (e.g., if
the two rails are vibrating in antiphase, this is /"!1; if in phase, /"#1). Other values
of / are possible as well, and may be appropriate in practice. In fact, the track mode is
determined by the excitation mechanism at the wheel, which is outside the subject area of
this paper. For rolling noise, for instance, roughness on the two rails is likely to be
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uncorrelated, so that both symmetric and antisymmetric modes are excited. Since they do
not decay with the same attenuation however, one will dominate further along the track,
and the net decay will not actually be exponential. For parametric excitation at the sleeper
passing frequency, due to the periodic sti!ness variation of the track (from the discrete
support provided by the sleepers) [15], a symmetric track mode will be excited. A wheel #at
on one wheel, as a third example, would give an equal combination of symmetric and
antisymmetric excitation.

2.4.3. Connection of junction to adjacent junctions on the rail

A second subscript is applied to the elements of vector w, and which indicates the junction
(numbered along the track, increasing in the positive x direction) at which w is evaluated.
The Floquet assumption is now made that the decay along the track is exponential:
w
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. Thus, noting that outgoing waves/near "elds at junctions j#1 and
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where c
B
"e~*krBL and c

N
"e~krNL represent the decay and phase shift of a wave (or near"eld

vibration) across the distance ¸ between two adjacent junctions.

2.5. SOLUTION METHODOLOGY

Equations (A1)}(A8), (18), (19), (28), (29) and (32)}(35) provide a homogenous (16]16)
matrix equation which is satis"ed for particular values of g,a#ib. The lowest such
positive value of a is the far "eld attenuation constant (per sleeper). A larger value of a gives
decay in the source near "eld. Although the attenuation per sleeper is calculated directly, all
results are presented as attenuation per metre.

3. RESULTS

All results, except as indicated, are for a typical Swedish light track on UIC-50
rails, referred to as the &&reference track'', and for which parameters are provided in
Appendix B.

3.1. ASYMPTOTIC BEHAVIOUR

Asymptotic behaviour, at the limit of very sti! or very compliant support of the rail, is of
interest because simple solutions for ideal cases are available to provide a veri"cation of the
wave method.

Figure 3 shows that the wave method result approaches the periodically pinned beam
result (as in reference [16]) when the pad and foundation are made very sti!. Since the
solution in reference [16] is for a Euler}Bernoulli beam, the Euler}Bernoulli models were
also used in the wave method.

As the pads, on the other hand, become very soft, the attenuation approaches that of
a free in"nite beam with decay due to material losses only: aP!Im(k

rB
), see Figure 4. At



Figure 3. Asymptotic behaviour of the wave method for a "rm foundation.**, wave method (Euler}Bernoulli
rail and sleeper) with K

Z
"1]1012 N/m, M

S
"1]104 kg/m;**, periodic pinned beam (period ¸ and bending

sti!ness B
r
) solution by method of [16]; } } } } } , wave method (Euler}Bernoulli rail and sleeper) with

K
Z
"1]1012 N/m, M

S
"1]106 kg/m.

Figure 4. Asymptotic behaviour of the wave method for soft pads.**, wave method with K
Z
"5]105 N/m;

**, decay by hysteresis losses only in a Timoshenko beam with bending sti!ness B
r
and loss factor g.
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the lowest frequencies, for which the pad (as a &&spring'') has high impedance (i.e., K
z
/iu is

large), the deviation is still signi"cant for the pad sti!ness used. For a reduction of two more
orders of magnitude, however, the two curves become indistinguishable above 10 Hz (not
shown).
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3.2. COMPARISON TO NUMERICAL RESULTS

For purposes of comparison, with more typical track component sti!nesses, a "nite
di!erence model of a "nite track is used; this numerical model is detailed in reference [17]. It
is based on the same physical model of the track, for the special case of Euler}Bernoulli
models of the rail and sleeper, so that the comparison only provides a veri"cation of the
formulation, not the physical assumptions. The "nite di!erence method is rather
computationally intensive. Certainly, there are more sophisticated and e$cient numerical
methods than this one, but, since its use is limited to providing a one-time veri"cation of the
reasonableness of the wave propagation results, it is adequate. Figure 5 shows the predicted
attenuation for the track detailed in Appendix B, with symmetric track mode, using both
the wave method and the "nite di!erence method (50-sleeper track). The same behaviour is
predicted by both methods, but the "nite di!erence method gives a higher attenuation
below about 400 Hz (although the shape of the curves is the same). One calculation is
carried out at 250 Hz, however, in which there are 100 sleepers. This result is in good
agreement with the wave method. This suggests that the deviation between the two curves is
due to the "nite length of the track in the "nite di!erence method, which, at low frequencies
is too short.

3.3. COMPARISON TO FIELD MEASUREMENTS

Figure 6 compares the wave method predictions with measured results from a &&Banklass
1'' track near SoK derhamn, Sweden. Such a track consists of UIC-60 rail and heavy concrete
sleepers in stone ballast.

A single 11-g accelerometer was mounted to the rail foot (oriented vertically by use of an
angle block). A hammer with a force transducer was then used to strike the rail head at two
excitation points separated by a distance corresponding to four sleeper bays. Attenuation
was determined from the di!erence in frequency response amplitude between the two
excitation points. The measurement point and the hammer blows were on only one rail, so
Figure 5. Comparison of wave method to a numerical result for symmetric track vibrations.**, wave method
(Euler}Bernoulli special case) with B

r
"3 244 500 Nm2;**, "nite di!erence method with B

r
"3 24 4 500 Nm2,

50-sleeper track; m, "nite di!erence method with B
r
"3 244500 N m2, 100-sleeper track.



Figure 6. Comparison of wave method to "eld measurements.**, wave method for UIC-60 track, symmetric
vibration; **, wave method for UIC-60 track, antisymmetric vibration; n, measured results from Swedish
Banklass 1 track.
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that, unfortunately, it is not possible to reconstruct the relative amplitudes of symmetric
vibration and antisymmetric vibration (at the time the measurements were made, their use
in the present context was not anticipated). The track, measurement conditions, and
measurement technique are more fully detailed in reference [18].

The predicted results are based on typical track component parameter values for
Banklass 1 track, since site-speci"c data were not available. The values di!ering from those
of the reference track are [19]: B

r
"4)8]106 Nm2, K

Z
"200 MN/m, M

r
"60)3 kg/m,

A
r
"7)686]10~3 m2, I

r
"30)55]10~6 m4.

The comparison indicates that the prediction was acceptable up to 1200 Hz, but most
especially at low frequencies. At high frequencies the attenuation is low, so that the
measured amplitude di!erences between the two transducers are small. This makes the
measured decay sensitive to noise. Accordingly, considerable scatter is observed.

It is also noted that, although both symmetric and antisymmetric vibrations should have
been excited by the hammer blows, the experimental data most often follows the curve
which indicates a lower attenuation. A plausible interpretation is that the more highly
attenuated mode decays so much before reaching the transducer that the weakly attenuated
mode dominates there (for blows at both excitation points).

3.4. EVALUATION OF SOME ASPECTS OF THE PHYSICAL MODEL

Predictions of attenuation in the reference track will now be used to illuminate the
signi"cance of some aspects of the physical model: track mode, choice of beam theory, and
discreteness of the sleepers.

Attenuation predictions for both symmetric and antisymmetric vibrations are presented
in Figure 7. As was even the case in Figure 3, the attenuation is high at low frequencies and
low at high frequencies, with the transition occurring at about 860 Hz (at 930 Hz in Figure
3, because of the Euler}Bernoulli model there). This is the frequency at which a simply



Figure 7. Attenuation prediction for Swedish light track. **, symmetric track mode; **, antisymmetric
track mode; } } } } }} , vibrations with remote rail detached.
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supported "nite beam of length equal to the sleeper spacing ¸, and bending sti!ness B
r
,

would have its "rst mode (the so-called &&pinned}pinned'' frequency).
With the more complicated model represented by Figure 7, however, more complicated

behaviour is also predicted. Such behaviour can be attributed to the dynamic behaviour of
the track components under the rail: the pads, sleepers, and ballast (which are ignored by
the periodic pinned beam solution). There are three symmetric (at 127, 579 and 1230 Hz)
and three antisymmetric (at 327, 880 and 1595 Hz) sleeper bending resonances in the
considered frequency band. There is also a rigid-body resonance of the rail mass on the pad
at about 612 Hz (&&pad resonance''), and of the sleeper-plus-rail mass on the ballast at about
104 Hz (&&ballast resonance''). The ballast resonance and the "rst (symmetric) sleeper
bending resonance are so close together, that, with the damping provided by the ballast,
their respective in#uences on the attenuation are indistinguishable.

Attenuation minima for symmetric vibrations occur at frequencies corresponding to
symmetric sleeper resonances. For antisymmetric vibrations, these occur at antisymmetric
sleeper resonances. These minima become less pronounced and eventually insigni"cant as
the frequency becomes very high. Moreover, both symmetric and antisymmetric vibrations
have an attenuation minimum at the ballast resonance. The "rst symmetric sleeper
resonance, at nearly the same frequency, must have an insigni"cant e!ect in comparison,
since both track modes have an attenuation minimum of about the same magnitude. The
breadth of the second attenuation minimum, for the symmetric vibration, is also partly due
to the pad resonance.

The di!erence in attenuation between the symmetric and antisymmetric cases can be
signi"cant at some frequencies. Near 700 Hz, for example, the "gure predicts a di!erence in
the attenuation constant of about 0)8/m, which corresponds to 7 dB/m additional
attenuation (for the symmetric case, compared to the antisymmetric). The e!ect of track
mode requires the incorporation of two rails into the model, as in the wave method.
Figure 8 con"rms that the wave propagation model agrees with the results of reference [7]
when the second rail is detached (by replacing equations (15) and (16), in which the second
rail acts as a source, with equations for a free re#ection of w

5
and w

6
at the far end of the



Figure 8. Attenuation in a track with the remote rail detached. **, wave method (Euler}Bernoulli) with
mirror source replaced by a simple re#ection at the far end of the sleeper; **, method of reference [7], with
identical physical parameters.

Figure 9. Attenuation predictions with variations of the physical model.**, &&continuous'' track, Timoshenko
models (wave method with ¸"0)065 m, and values of K

Z
, B

S
, I

S
, A

S
, M

S
, K

S
, C

S
reduced by one order of

magnitude with respect to the reference track);**, discrete track, Timoshenko models; }} } } } , discrete track,
Euler}Bernoulli models.
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sleeper). Providing such a case in Figure 7, also, it is evident that a model incorporating only
one rail will sometimes overpredict attenuation, and by extension, underpredict the
radiated noise.

The e!ect of the discreteness of the sleepers can be seen in Figure 9, which compares
a continuous track to the discrete one; the continuous track would correspond to the
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physical model of reference [6]. The &&continuous'' track here is actually modelled by
allowing ¸ to become very small, while holding ratios K

z
/¸, B

S
/¸, I

S
/¸, A

S
/¸, M

S
/¸, K

S
/¸,

and C
S
/¸ constant. The main di!erences are near the pinned}pinned frequency, and in the

band immediately above that.
Figure 9 also provides a comparison of the Timoshenko and the Euler}Bernoulli models.

The location of the pinned}pinned frequency is the main di!erence.

3.5. PARAMETRIC STUDY

Figures 10}13 provide results of a small parametric survey, by comparing the reference
track (the same as in Figure 4) with a track in which some design parameter is altered. The
design parameter altered is pad sti!ness (Figures 10 and 11), sleeper spacing (Figure 12), or
sleeper length (Figure 13). All results are for symmetric track mode. Evidently, all of these
parameters have a strong in#uence on the attenuation.

Increasing the pad sti!ness (Figure 10) is seen to increase considerably the attenuation at
high frequencies, above the pinned}pinned frequency. At low frequencies, there is a more
modest attenuation increase, since the pad has a high impedance (Ju~1) in any case.
A sti!er pad more "rmly attaches the rail to the track below, and leads much energy down
into the sleepers and ballast, where the losses are high. There is also increased dissipation in
the pad itself. This echoes the results of reference [3] to the e!ect that a sti!er pad reduces
the rail's &&e!ective radiating length'' (and, in consequence, the wayside noise); &&e!ective
radiating length'' is used in reference [3] as a measure of attenuation, such that the smaller it
is, the greater is the attenuation. It should be realized, however, that inde"nitely increasing
the pad sti!ness will not continually give corresponding increases in attenuation. Figure 11
shows that the attenuation tends to a limit, so that the rail may at some point be regarded as
&&pinned'' to the sleeper.

The pinned}pinned frequency itself, as can be seen, is independent of the pad sti!ness. It is
a function of the sleeper spacing ¸ and of the rail bending sti!ness B

r
.

Figure 10. E!ect of pad sti!ness on attenuation. **, K
Z
"250 MN/m; **, K

Z
"500 MN/m (reference

track); } } } } } , K
Z
"1000 MN/m.



Figure 11. E!ect of pad sti!ness of attenuation. **, 400 Hz; **, 800 Hz; } } } } } } , 1200 Hz.

Figure 12. E!ect of sleeper spacing on attenuation.**, ¸"0)4 m;**, ¸"0)65 m (reference track); } } } } } ,
¸"1 m.
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The sleeper spacing e!ects the attenuation curves because it shifts the pinned}pinned
frequency, whereas the various minima and maxima explainable by sleeper resonances and
antiresonances remain unchanged. For the track considered, a change of the sleeper spacing
in either direction, away from ¸"0)65 m, increases the attenuation around 860 Hz, by
shifting away the pinned}pinned resonance. The pinned}pinned frequency is clearly seen at
400 Hz for the case ¸"1 m, as is the second pinned}pinned frequency at 1310 Hz. For the
case ¸"0)4 m, it is shifted to just outside of the plot (to 1840 Hz). It is also clear from the
"gure that, in a broadband sense, attenuation tends to decrease with increasing sleeper



Figure 13. E!ect of sleeper length on attenuation.**, ¸
S
"1)5 m (no overhang);**, ¸

S
"2)5 m (reference

track); } } } } } } , ¸
S
"3)5 m.
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spacing. There are fewer re#ecting}transmitting obstacles (i.e., the sleeper}rail junctions)
over a given distance of track if the sleeper spacing is greater.

Moreover, the ballast resonance slightly decreases as ¸ increases (observe the slight
downward shift in the frequency of the "rst attenuation minimum with increasing sleeper
spacing). While the sti!ness under a single sleeper is constant, there is an increase in the
length of rail supported above each sleeper. This e!ect is only slight, since the sleeper mass is
much greater than the supported section of the rail in any case.

One also expects a decrease in the pad resonance with increasing ¸, again due to the
increase in rail mass above each pad. Since the sleeper mass is not involved, the change
should be greater than for the ballast resonance. Indeed, this is borne out by the
considerable frequency shift of the second attenuation minimum when going from ¸"0)4
to 0)65 m. Nevertheless, it does not occur for the further increase to ¸"1 m (in fact, there is
a shift in the opposite direction).

For the sleeper length, Figure 13, the pinned}pinned frequency is una!ected (since it is
only a function of the sleeper spacing), but the sleeper resonances and antiresonances shift,
and thus also the various minima and maxima attributable to them.

4. SUMMARY AND CONCLUSIONS

E$cient predictions of attenuation in railway track are obtainable by a method based on
the solution of wave (and near "eld) amplitudes at sleeper}rail junctions in an in"nite track.

An important conclusion is that the attenuation is strongly dependent on the relative
phase of vibration between the two rails, i.e., the &&track mode''. Antisymmetric vibration
tends to have low attenuation bands at antisymmetric sleeper modes, while symmetric
vibration has them, instead, at symmetric sleeper modes. A model lacking the second rail
will, at some frequencies, overpredict the attenuation.

The attenuation depends also on track design, notably pad sti!ness, sleeper spacing, and
sleeper length.
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The junction conditions include the following terms which contain the entire Timoshenko
correction: s
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APPENDIX B: SYMBOLS AND REFERENCE VALUES FOR SAMPLE RESULTS

Values represent typical Swedish light track on UIC-50 rails (&&reference track'').

A
r
"6)75]10~3 m2 cross-sectional area of rail

A
S
"3)85]10~2 m2 cross-sectional area of sleeper

B
S
"4)6]106 Nm2 Euler}Bernoulli bending sti!ness of sleeper (x-axis)

B
r
"4 294 500 Nm2 Euler}Bernoulli bending sti!ness of rail (y-axis)

C
S
"6]104 Ns/m2 damping per unit length (along sleeper) of ballast

G
r
"7)62]1010 Pa shear modulus of rail

G
S
"1)11]1010 Pa shear modulus of sleeper

I
r
"15)45]10~6 m4 moment of inertia of rail cross-section

I
S
"1)84]10~4 m4 moment of inertia of sleeper cross-section

K
S
"6]107 N/m2 sti!ness per unit length (along sleeper) of ballast

K
Z
"5]108 N/m pad sti!ness in normal deformation

¸"0)65 m sleeper spacing
¸
S
"2)5 m sleeper length

M
r
"52)0 kg/m length density of rail

M
S
"100 kg/m length density of sleeper

y
0
"0)5 m sleeper overhang

g"0)004 rail loss factor
g
S
"0)01 sleeper loss factor

g
Z
"0)15 pad loss factor in normal deformation

q
r
"0)4 Timoshenko constant for rail (as de"ned in reference [14])

q
S
"0)83 Timoshenko constant for sleeper (as de"ned in reference [14])

The complex sleeper, rail, and pad sti!nesses (indicated by a superscripted *) are given by
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(1#ig

S
), B*

r
"B

r
(1#ig), and K*

Z
"K

Z
(1#ig

Z
) respectively.


	1. INTRODUCTION
	2. METHOD
	Figure 1
	Figure 2

	3. RESULTS
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13

	4. SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: JUNCTION EQUATIONS EXPLICITLY IN TERMS OF w
	APPENDIX B: SYMBOLS AND REFERENCE VALUES FOR SAMPLE RESULTS

